Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 292, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632554

RESUMO

Spike length (SL) is one of the most important agronomic traits affecting yield potential and stability in wheat. In this study, a major stable quantitative trait locus (QTL) for SL, i.e., qSl-2B, was detected in multiple environments in a recombinant inbred line (RIL) mapping population, KJ-RILs, derived from a cross between Kenong 9204 (KN9204) and Jing 411 (J411). The qSl-2B QTL was mapped to the 60.06-73.06 Mb region on chromosome 2B and could be identified in multiple mapping populations. An InDel molecular marker in the target region was developed based on a sequence analysis of the two parents. To further clarify the breeding use potential of qSl-2B, we analyzed its genetic effects and breeding selection effect using both the KJ-RIL population and a natural mapping population, which consisted of 316 breeding varieties/advanced lines. The results showed that the qSl-2B alleles from KN9204 showed inconsistent genetic effects on SL in the two mapping populations. Moreover, in the KJ-RILs population, the additive effects analysis of qSl-2B showed that additive effect was higher when both qSl-2D and qSl-5A harbor negative alleles under LN and HN. In China, a moderate selection utilization rate for qSl-2B was found in the Huanghuai winter wheat area and the selective utilization rate for qSl-2B continues to increase. The above findings provided a foundation for the genetic improvement of wheat SL in the future via molecular breeding strategies.


Assuntos
Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico , Triticum/genética , Ligação Genética , Melhoramento Vegetal , Fenótipo
2.
Theor Appl Genet ; 137(4): 87, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512468

RESUMO

KEY MESSAGE: A total of 38 putative additive QTLs and 55 pairwise putative epistatic QTLs for tiller-related traits were reported, and the candidate genes underlying qMtn-KJ-5D, a novel major and stable QTL for maximum tiller number, were characterized. Tiller-related traits play an important role in determining the yield potential of wheat. Therefore, it is important to elucidate the genetic basis for tiller number when attempting to use genetic improvement as a tool for enhancing wheat yields. In this study, a quantitative trait locus (QTL) analysis of three tiller-related traits was performed on the recombinant inbred lines (RILs) of a mapping population, referred to as KJ-RILs, that was derived from a cross between the Kenong 9204 (KN9204) and Jing 411 (J411) lines. A total of 38 putative additive QTLs and 55 pairwise putative epistatic QTLs for spike number per plant (SNPP), maximum tiller number (MTN), and ear-bearing tiller rate (EBTR) were detected in eight different environments. Among these QTLs with additive effects, three major and stable QTLs were first documented herein. Almost all but two pairwise epistatic QTLs showed minor interaction effects accounting for no more than 3.0% of the phenotypic variance. The genetic effects of two colocated major and stable QTLs, i.e., qSnpp-KJ-5D.1 and qMtn-KJ-5D, for yield-related traits were characterized. The breeding selection effect of the beneficial allele for the two QTLs was characterized, and its genetic effects on yield-related traits were evaluated. The candidate genes underlying qMtn-KJ-5D were predicted based on multi-omics data, and TraesKN5D01HG00080 was identified as a likely candidate gene. Overall, our results will help elucidate the genetic architecture of tiller-related traits and can be used to develop novel wheat varieties with high yields.


Assuntos
Locos de Características Quantitativas , Triticum , Triticum/genética , Mapeamento Cromossômico/métodos , Ligação Genética , Melhoramento Vegetal , Fenótipo
3.
Theor Appl Genet ; 136(10): 211, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737910

RESUMO

KEY MESSAGE: A major stable QTL for kernel number per spike was narrowed down to a 2.19-Mb region containing two potential candidate genes, and its effects on yield-related traits were characterized. Kernel number per spike (KNPS) in wheat is a key yield component. Dissection and characterization of major stable quantitative trait loci (QTLs) for KNPS would be of considerable value for the genetic improvement of yield potential using molecular breeding technology. We had previously reported a major stable QTL controlling KNPS, qKnps-4A. In the current study, primary fine-mapping analysis, based on the primary mapping population, located qKnps-4A to an interval of approximately 6.8-Mb from 649.0 to 655.8 Mb on chromosome 4A refering to 'Kenong 9204' genome. Further fine-mapping analysis based on a secondary mapping population narrowed qKnps-4A to an approximately 2.19-Mb interval from 653.72 to 655.91 Mb. Transcriptome sequencing, gene function annotation analysis and homologous gene related reports showed that TraesKN4A01HG38570 and TraesKN4A01HG38590 were most likely to be candidate genes of qKnps-4A. Phenotypic analysis based on paired near-isogenic lines in the target region showed that qKnps-4A increased KNPS mainly by increasing the number of central florets per spike. We also evaluated the effects of qKnps-4A on other yield-related traits. Moreover, we dissected the QTL cluster of qKnps-4A and qTkw-4A and proved that the phenotypic effects were probably due to close linkage of two or more genes rather than pleiotropic effects of a single gene. This study provides molecular marker resource for wheat molecular breeding designed to improve yield potential, and lay the foundation for gene functional analysis of qKnps-4A.


Assuntos
Locos de Características Quantitativas , Triticum , Triticum/genética , Embaralhamento de DNA , Anotação de Sequência Molecular , Fenótipo
4.
Nat Commun ; 13(1): 4680, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945219

RESUMO

DPF3, a component of the SWI/SNF chromatin remodeling complex, has been associated with clear cell renal cell carcinoma (ccRCC) in a genome-wide association study. However, the functional role of DPF3 in ccRCC development and progression remains unknown. In this study, we demonstrate that DPF3a, the short isoform of DPF3, promotes kidney cancer cell migration both in vitro and in vivo, consistent with the clinical observation that DPF3a is significantly upregulated in ccRCC patients with metastases. Mechanistically, DPF3a specifically interacts with SNIP1, via which it forms a complex with SMAD4 and p300 histone acetyltransferase (HAT), the major transcriptional regulators of TGF-ß signaling pathway. Moreover, the binding of DPF3a releases the repressive effect of SNIP1 on p300 HAT activity, leading to the increase in local histone acetylation and the activation of cell movement related genes. Overall, our findings reveal a metastasis-promoting function of DPF3, and further establish the link between SWI/SNF components and ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Transdução de Sinais , Carcinoma de Células Renais/genética , Cromatina , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Neoplasias Renais/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo
5.
Anal Chem ; 94(11): 4576-4583, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35262341

RESUMO

Anthropogenic and climatic perturbations redistribute arsenic (As), antimony (Sb), and selenium (Se) within the environment. The speciation characteristics of these elements determine their behavior and biogeochemical cycling, but these redox-sensitive species are challenging to capture, with few methods able to harmonize measurements across the whole plant-soil-ecosystem continuum. In this study, we developed a novel diffusive gradient in thin films (DGT) method based on aminopropyl and mercaptopropyl bi-functionalized mesoporous silica spheres (AMBS) to achieve in-situ, simultaneous, and selective quantification of AsIII, SbIII, and SeIV, three typical/toxic but difficult to measure inorganic species. When used for environmental monitoring within a river catchment, AMBS-DGT exhibited stable/accurate predictions of these species despite varying water chemistries (ionic strength 0.01-200 mmol L-1 NO3-, pH 5-9 for AsIII and SbIII, and pH 5-7.5 for SeIV). Furthermore, river deployments also showed that time-averaged species concentrations by AMBS-DGT were reproducible compared with high-frequency sampling and measurement by high performance liquid chromatography coupled with inductively coupled plasma mass spectroscopy. When AMBS-DGT was used for sub-mm scale chemical imaging of soil solute fluxes, the method resolved concomitant redox-constrained spatial patterns of AsIII, SbIII, and SeIV associated with root O2 penetration within anaerobic soil. Improved capabilities for measurement of compartment interfaces and microniche features are critical alongside the measurement of larger-scale hydrological processes that dictate the fine-scale effects, with the AMBS-DGT achieving this for AsIII, SbIII, and SeIV.


Assuntos
Arsênio , Selênio , Arsênio/análise , Ecossistema , Monitoramento Ambiental/métodos , Água Doce/análise , Selênio/química , Solo/química
6.
Chemosphere ; 291(Pt 1): 132771, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34740698

RESUMO

In this study, a two-step functionalizing strategy by combining co-condensation with grafting procedures was employed to synthesize well-ordered Amino- and Thiol-Bifunctionalized SBA-15 (ATBS) mesoporous silica. Its physicochemical properties, performance, and mechanisms in immobilization of toxic metals Pb and Cd in water and soil were investigated. After bi-functionalization, X-ray diffractometer, transmission electron microscope, and N2 adsorption-desorption measurements confirmed that the ATBS maintained a highly-ordered mesoporous structure, large surface area and pore volume. The elemental analysis, Fourier transform infrared spectroscopy and X-ray Photoelectron Spectroscopy (XPS) evidenced the successful incorporation of amine and thiol groups into ATBS. These structure and functional characteristics of ATBS benefited Pb and Cd sorption. Sorption isotherms of Pb and Cd were better fit with Sips and Redlich-Peterson models. Sorption kinetics suggested that Pb sorption was mainly regulated by chemical reactions, whereas both diffusion process and chemical reactions were rate-regulating steps in Cd sorption. ATBS showed the maximum sorption capacities for Pb and Cd at 120 and 38 mg g-1, respectively. The sorption mechanisms revealed by XPS measurements suggested that Cd sorption was mainly attributed to thiol groups while Pb was efficiently bond to both thiol and amino groups. High and stable sorption efficiencies were attained in the pH range of 4-6, with a higher affinity towards Pb than Cd. Furthermore, its ability to immobilize Pb and Cd in soils was examined with an incubation experiment, which showed that ATBS reduced 30-56% of MgCl2-extractable Pb and Cd in a contaminated soil. The synthesized sorbent via the two-step functionalizing strategy shows high sorption efficiency towards Pb and Cd, and thus it has potential application in remediating Pb and Cd contaminated water and soils.


Assuntos
Cádmio , Chumbo , Adsorção , Aminas , Dióxido de Silício , Compostos de Sulfidrila
7.
Nanoscale ; 13(48): 20471-20480, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34851329

RESUMO

Tantalum disulfide (TaS2), an emerging group VB transition metal dichalcogenide, with unique layered structure, rich phase diagrams, metallic behavior, higher carrier concentration and mobility is emerging as a prototype for revealing basic physical phenomena and developing practical applications. However, its photonics properties and even engineering-related processes are still rare. Here, the top-down experiment demonstration, including synthesis, thickness optimization and nonlinear optical application, has been reported. In addition, the ultrafast (∼373 fs) erbium-doped fiber pulse with a small time-bandwidth product (∼0.34) and long-term stability (∼25 days) was realized using the nonlinear absorption properties of the high-quality 2H-TaS2 nanosheet. These results suggest an experimental route for further ultrafast photonics exploration based on metallic transition metal dichalcogenides.

8.
J Phys Condens Matter ; 33(50)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34544055

RESUMO

Two-dimensional (2D) materials have attracted extensive interests due to their wide range of electronic and optical properties. After continuous and extensive research, black phosphorus (BP), a novel member of 2D layered semiconductor material, benefit for the unique in-plane anisotropic structure, controllable direct bandgap characteristic, and high charge carrier mobility, has attracted tremendous attention and successfully applied in ultrafast pulse generation. This article, which focuses on near-infrared ultrafast laser demonstration of BP, present discussion of preparation methods for high quality BP nanosheet, various BP based ultrafast lasers in the spatial/temporal domain, and the future research needs.

9.
J Phys Condens Matter ; 32(43): 435701, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32634789

RESUMO

We successfully grew single crystals of Si- and Ge-square-net compounds of NbSiSb and NbGeSb whose excellent crystalline quality are verified using single-crystal x-ray diffraction θ-2θ scans, rocking curves, scanning and transmission electron microscopies. Since these two compounds share major crystallographic similarity with the topological nodal-line semimetals of ZrSiS family, we employ density functional theory (DFT) calculations and magnetotransport measurements to demonstrate their band structures as well as the electron scattering mechanisms. DFT calculations show that the fermiology displays strong anisotropy from the crystallographic c-axis to the ab-plane and weak anisotropy within the ab plane, which is consistent with the strong anisotropic magnetotransport behaviors. Following the Kohler's scaling rule we prove that similar interband and intraband electron-phonon scattering mechanisms work in both the NbSiSb and NbGeSb compounds. The study of electronic transport mechanism in the presence of external magnetic field renders deep insight into topological behavior together with its Fermi surface, and the high similarity of crystallography and strong difference in band structures between the present single crystals and that of ZrSiS family provides the possibility to tune the band structure via element doping.

10.
Adv Sci (Weinh) ; 7(5): 1902699, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32154074

RESUMO

Terahertz (THz) photon detection is of particular appealing for myriad applications, but it still lags behind efficient manipulation with electronics and photonics due to the lack of a suitable principle satisfying both high sensitivity and fast response at room temperature. Here, a new strategy is proposed to overcome these limitations by exploring the photothermoelectric (PTE) effect in an ultrashort (down to 30 nm) channel with black phosphorus as a photoactive material. The preferential flow of hot carriers is enabled by the asymmetric Cr/Au and Ti/Au metallization with the titled-angle evaporation technique. Most intriguingly, orders of magnitude field-enhancement beyond the skin-depth limit and photon absorption across a broadband frequency can be achieved. The PTE detector has excellent sensitivity of 297 V W-1, noise equivalent power less than 58 pW/Hz0.5, and response time below 0.8 ms, which is superior to other thermal-based detectors at room temperature. A rigorous comparison with existing THz detectors, together with verification by further optical-pumping and imaging experiments, substantiates the importance of the localized field effect in the skin-depth limit. The results allow solid understanding on the role of PTE effect played in the THz photoresponse, opening up new opportunities for developing highly sensitive THz detectors for addressing targeted applications.

11.
Nat Commun ; 11(1): 1330, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165616

RESUMO

Black phosphorus (BP) is a promising two-dimensional layered semiconductor material for next-generation electronics and optoelectronics, with a thickness-dependent tunable direct bandgap and high carrier mobility. Though great research advantages have been achieved on BP, lateral synthesis of high quality BP films still remains a great challenge. Here, we report the direct growth of large-scale crystalline BP films on insulating silicon substrates by a gas-phase growth strategy with an epitaxial nucleation design and a further lateral growth control. The optimized lateral size of the achieved BP films can reach up to millimeters, with the ability to modulate thickness from a few to hundreds of nanometers. The as-grown BP films exhibit excellent electrical properties, with a field-effect and Hall mobility of over 1200 cm2V-1s-1 and 1400 cm2V-1s-1 at room temperature, respectively, comparable to those exfoliated from BP bulk crystals. Our work opens the door for broad applications with BP in scalable electronic and optoelectronic devices.

12.
Anal Chem ; 92(5): 3581-3588, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31916433

RESUMO

In situ monitoring of Sb speciation improves the understanding of Sb biogeochemistry and toxicity in ecosystems. Precise measurement of Sb is a challenge due to its instability of oxidation and ultratrace concentration. The development of simple and reliable methods specific to SbIII measurement is not only appealing but essential for implementing regulations. Here, we present an in situ speciation analysis method for SbIII, using the diffusive gradients in thin films (DGT) technique, combined with mercapto-functionalized SBA-15 mesoporous silica nanoparticles (MSBA). Laboratory performance tests confirmed MSBA-DGT uptake was independent of pH (4-9) and ionic strength (0.1-200 mmol L-1). DGT devices equipped with MSBA-based binding gels showed a theoretically linear accumulation of SbIII and exhibited a high capacity for SbIII at 65 µg/gel disc, with negligible accumulation of SbV over a 72 h deployment. Compared with commercial 3-mercaptopropyl-functionalized silica (MFS), the nanosized MSBA facilitate its even distribution in the binding gels. Furthermore, the good selectivity and high homogeneity of the MSBA gel enabled it to be applied in a rice rhizosphere in conjunction with AgI gel to investigate the effects of sulfur application on the SbIII solubility. In summary, the newly developed MSBA-DGT provides a selective measurement of SbIII, showing potential for environmental monitoring and further application in understanding the biogeochemical process of Sb.


Assuntos
Antimônio/análise , Dióxido de Silício/química , Solo/química , Difusão , Porosidade
13.
J Hazard Mater ; 383: 121196, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31539663

RESUMO

Lanthanum oxide nanoparticles (nano-La2O3) was used to develop a novel binding gel within an in situ passive sampler based on diffusive gradients in thin-films technique (NL-DGT) for measuring As(V), Sb(V), and V(V). Performance characteristics of NL-DGT were independent of pH (pH: 3.1-7.9 for As, 3.1-8.5 for V, and 3.1-6.5 for Sb) and ionic strength (0.1-500 mmol L-1 for As and V, and 0.1-200 mmol L-1 for Sb). No obvious competition effects among As, Sb, and V with different concentration ratios were found for NL-DGT measurement. Long term storage (8-188 d) of the nano-La2O3 gels in 0.01 mol L-1 NaNO3 at 4 °C did not affect their performance. During the field deployments in Yangtze and Jiuxiang River, NL-DGT measured concentrations of As and V were similar to those measured by the grab samples, while some differences were found for Sb between DGT and grab sampling because higher pH (∼8.0) in the studied rivers caused the performance deterioration of NL-DGT. Generally, the newly developed NL-DGT is suitable for monitoring As and V in freshwater from acidic to light alkaline and Sb in acidic and neutral water.

14.
ACS Appl Mater Interfaces ; 11(40): 36854-36862, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31535548

RESUMO

Black phosphorus (BP) ranks among the most promising saturable absorber materials for ultrafast pulse generations at 2 µm. However, the easy-to-degrade characteristic of BP seriously limits the long-term operation of ultrafast fiber lasers and hence becomes a bottleneck for its relevant practical applications. In this paper, a modified electrochemical delamination exfoliation process was explored to produce high-performance, large-size, and oxidation-resistant BP nanosheets, where BP nanosheets in high yield with evenly coated tetra-n-butyl-ammonium organics by precisely controlling the intercalation chemistry can be obtained. A mode-locked Tm/Ho co-doped fiber laser with high temporal stability and long-term operation capability was demonstrated based on the innovatively fabricated BP saturable absorber. The self-starting mode-locking operation featuring a high signal-to-noise ratio of 58 dB and long-term stability has been verified for at least 3 weeks, which indicates the successful passivation of the employed synthesis method. These results fully indicated that passivated BP is an efficient candidate in a 2 µm range ultrafast photonic field, which will promote the ultrafast optical application of BP and also other infrared photonic and photoelectronic devices.

15.
Nanoscale ; 11(31): 14491-14527, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31361285

RESUMO

Black phosphorus (BP), a novel two-dimensional (2D) layered semiconductor material, has attracted tremendous attention since 2014 due to its prominent carrier mobility, thickness-dependent direct bandgap and in-plane anisotropic physical properties. BP has been considered as a promising material for many applications, such as in transistors, photonics, optoelectronics, sensors, batteries and catalysis. However, the development of BP was hampered by its instability under ambient conditions, as well as by the lack of methods to synthesize large-area and high quality 2D nanofilms. Recently, some BP-analogue materials such as binary phosphides (MPx), transition metal phosphorus trichalcogenides (MPX3), and 2D group V (pnictogens) and 2D group VI materials have attracted increasing interest for their unique and stable structures, and excellent physical and chemical properties. This article, which focuses on BP and BP-analogue materials, will present their crystal structure, properties, synthesis methods and applications. Also the similarity and difference between BP and BP-analogue materials will be discussed, and the presentation of the future opportunities and challenges of the materials are included at the end.

16.
ACS Appl Mater Interfaces ; 11(6): 5938-5946, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30648840

RESUMO

Micro-supercapacitors (micro-SCs) are significant micro-scale power sources and energy storage components for miniaturized electronic and flexible devices, where electrodes play a key role in determining their electrochemical performances. The efficient intercalation of ions between the stacking layers of two-dimensional layered materials (2DLM) makes them great candidates as thin-film electrodes in micro-SCs, where one can achieve much enhanced volumetric capacitance. However, a great challenge is to develop a high-yield production method for high-quality 2DLM thin-film electrodes. In this work, we have successfully reported a scalable fabrication process for free-standing black phosphorous (BP) thin films, derived from high-quality few-layer BP nanoflakes via a modified electrochemical exfoliation route, for flexible quasi-solid-state micro-SCs (QMSCs). The as-fabricated QMSCs exhibit an excellent stable electrochemical performance at a high scan rate of up to 100 V s-1. More importantly, our QMSC device can not only achieve an outstanding energy density of 3.63 mW h cm-3, a remarkable power density of 10.1 W cm-3, and a superior cycle span (94.3% capacity retention even after 50 000 cycles), but also deliver excellent mechanical flexibility demonstrated by 91.3% capacity retention after 500 mechanical bending cycles. More interestingly, to meet the energy density and power density needs for various practical applications, multiple QMSCs can be successfully integrated in parallel or in series, which is demonstrated by lighting up of the red-light-emitting diode. The BP-based QMSCs can be patterned on a single substrate with flexible photodetectors based on same BP thin film to form a self-powered optoelectronic system.

17.
Anal Chem ; 91(2): 1344-1352, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30560662

RESUMO

Thallium (Tl) has been identified as a priority contaminant because of its severe toxic effects. Exact measurement of Tl is a challenge because it is difficult to avoid altering the element's chemical speciation during sampling, transport, and storage. In situ measurement may be a good choice. Based on the in situ technique of diffusive gradients in thin films (DGT), new DGT devices equipped with novel laboratory-synthesized manganese oxide (δ-MnO2) binding gels were developed and systematically validated for the measurement of Tl, including Tl(I) and Tl(III) species, in water. Comparison between Chelex binding gel and δ-MnO2 gel on the uptake kinetics of Tl demonstrated that δ-MnO2 binding gels could adsorb Tl rapidly and effectively. Removal of Tl from the δ-MnO2 gels was achieved by use of 1 mol·L-1 oxalic acid, yielding elution efficiencies of 1.0 for Tl(I) and 0.86 for TI(III). Theoretical responses from DGT devices loaded with δ-MnO2 gel (δ-MnO2-DGT) were obtained irrespective of pH (4-9) and ionic strength (0.1-200 mmol·L-1 NaNO3). δ-MnO2-DGT showed good potential for long-term monitoring of Tl due to its high adsorption capacity of 27.1 µg·cm-2 and the stable performance of δ-MnO2 binding gel kept in solution, containing only 10 mmol·L-1 NaNO3, for at least 117 days. Field deployment trials confirmed that δ-MnO2-DGT can accurately measure the time-averaged concentrations of Tl in fluvial watercourses. In summary, the newly developed δ-MnO2-DGT technique shows potential for environmental monitoring and biogeochemical investigation of Tl in waters.


Assuntos
Géis/química , Compostos de Manganês/química , Óxidos/química , Rios/química , Tálio/análise , Poluentes Químicos da Água/análise , Adsorção , Difusão , Concentração de Íons de Hidrogênio , Cinética , Limite de Detecção , Espectrometria de Massas/métodos , Concentração Osmolar
18.
Environ Sci Technol ; 52(24): 14140-14148, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30431268

RESUMO

The speciation of selenium (Se) controls its fate and behavior, determining both its biological and environmental activities. However, in situ monitoring of SeIV presents a significant challenge due to its sensitivity to redox change. A novel diffusive gradients in thin films (DGT) technique containing mercapto-, amino-bifunctionalized SBA15 mesoporous silica nanoparticles was developed and evaluated in a series of laboratory and field deployment tests. The SBA-DGT exhibited a linear accumulation of SeIV ( r2 > 0.997) over a 72 h deployment, with negligible accumulation of SeVI(<5%). Consistent prediction of SeIV occurred within ionic strength and pH ranges of 0.1-200 mmol L-1 and 3.6-8, respectively. Limits of detection of the SBA-DGT were 0.03 µg SeIV L-1, which is suitable for natural waters. Moreover, the properties of the bifunctionalized SBA15 enable it to be fabricated within ultrathin (0.05 mm) gel layers for use in conjunction with O2 planar optode imaging. This new sandwich sensor technology with SBA-DGT was validated by mapping the two-dimensional distribution of SeIV and oxygen simultaneously in rice rhizospheres. This study shows that SBA-DGT provides a selective measurement of SeIV in situ, demonstrating its potential for both environmental monitoring and as a research tool for improving our understanding of Se biogeochemical processes.


Assuntos
Nanopartículas , Selênio , Monitoramento Ambiental , Dióxido de Silício , Solo
19.
Anal Chem ; 90(16): 10016-10023, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30037218

RESUMO

Widespread use of organophosphorus flame retardants (OPFRs) and their ubiquity in water results in the need for a robust and reliable monitoring technique to better understand their fate and environmental impact. In situ passive sampling using the diffusive gradients in thin-films (DGT) technique provides time-integrated data and is developed for measuring OPFRs here. Ultrasonic extraction of binding gels in methanol provided reliable recoveries for all tested OPFRs. Diffusion coefficients of TCEP, TCPP, TDCPP, TPrP, TBP, and TBEP in the agarose diffusive gel (25 °C) were obtained. The capacity of an HLB binding gel for OPFRs was >115 µg per disc, and the binding performance did not deteriorate with time up to 131 days. DGT performance is independent of typical environmental ranges of pH (3.12-9.71), ionic strength (0.1-500 mmol L-1), and dissolved organic matter (0-20 mg L-1), and also of diffusive layer thickness (0.64-2.14 mm) and deployment time (3-168 h). Negligible competition effects between OPFRs was found. DGT-measured concentrations of OPFRs in a wastewater treatment plant (WWTP) effluent (12-16 days) were comparable to those obtained by grab sampling, further verifying DGT's reliability for measuring OPFRs in waters.

20.
Biosens Bioelectron ; 79: 1-8, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26686916

RESUMO

Photoluminescent carbon nanodots (CNDs) have offered considerable potential to be used in biomedical and environmental fields including live cell imaging and heavy metal ion detection due to their superior quantum emission efficiencies, ability to be functionalized using a variety of chemistries and apparent absence of toxicity. However, to date, synthetic yield of CNDs derived from biomass via hydrothermal carbonization is quite low. We report here the synthesis of nitrogen-doped carbon nanodots (N-doped CNDs) derived from hydrosoluble chitosan via hydrothermal carbonization. The synthetic yield could reach 38.4% which is 2.2-320 times increase compared with that from other biomass reported so far. These N-doped CNDs exhibited a high quantum yield (31.8%) as a consequence of nitrogen incorporation coincident with multiple types of functional groups (C=O, O-H, COOH, and NH2). We further demonstrate applications of N-doped CNDs as probes for live cell multicolor imaging and heavy metal ion detection. The N-doped CNDs offered potential as mercury ion sensors with detection limit of 80nM. A smartphone application (APP) based on N-doped CNDs was developed for the first time providing a portable and low cost detection platform for detection of Hg(2+) and alert of heavy metal ions contamination.


Assuntos
Técnicas Biossensoriais/instrumentação , Carbono/química , Quitosana/química , Substâncias Luminescentes/química , Mercúrio/análise , Nanoestruturas/química , Smartphone/instrumentação , Cátions Bivalentes/análise , Linhagem Celular , Humanos , Limite de Detecção , Substâncias Luminescentes/síntese química , Modelos Moleculares , Nitrogênio/química , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...